Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737955

RESUMO

Peroxisomes are organelles involved in many metabolic processes including lipid metabolism, reactive oxygen species (ROS) turnover, and antimicrobial immune responses. However, the cellular mechanisms by which peroxisomes contribute to bacterial elimination in macrophages remain elusive. Here, we investigated peroxisome function in iPSC-derived human macrophages (iPSDM) during infection with Mycobacterium tuberculosis (Mtb). We discovered that Mtb-triggered peroxisome biogenesis requires the ESX-1 type 7 secretion system, critical for cytosolic access. iPSDM lacking peroxisomes were permissive to Mtb wild-type (WT) replication but were able to restrict an Mtb mutant missing functional ESX-1, suggesting a role for peroxisomes in the control of cytosolic but not phagosomal Mtb. Using genetically encoded localization-dependent ROS probes, we found peroxisomes increased ROS levels during Mtb WT infection. Thus, human macrophages respond to the infection by increasing peroxisomes that generate ROS primarily to restrict cytosolic Mtb. Our data uncover a peroxisome-controlled, ROS-mediated mechanism that contributes to the restriction of cytosolic bacteria.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Peroxissomos , Espécies Reativas de Oxigênio , Humanos , Citosol , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Secreção Tipo VII
2.
Nat Microbiol ; 8(5): 803-818, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959508

RESUMO

Autophagy is a cellular innate-immune defence mechanism against intracellular microorganisms, including Mycobacterium tuberculosis (Mtb). How canonical and non-canonical autophagy function to control Mtb infection in phagosomes and the cytosol remains unresolved. Macrophages are the main host cell in humans for Mtb. Here we studied the contributions of canonical and non-canonical autophagy in the genetically tractable human induced pluripotent stem cell-derived macrophages (iPSDM), using a set of Mtb mutants generated in the same genetic background of the common lab strain H37Rv. We monitored replication of Mtb mutants that are either unable to trigger canonical autophagy (Mtb ΔesxBA) or reportedly unable to block non-canonical autophagy (Mtb ΔcpsA) in iPSDM lacking either ATG7 or ATG14 using single-cell high-content imaging. We report that deletion of ATG7 by CRISPR-Cas9 in iPSDM resulted in increased replication of wild-type Mtb but not of Mtb ΔesxBA or Mtb ΔcpsA. We show that deletion of ATG14 resulted in increased replication of both Mtb wild type and the mutant Mtb ΔesxBA. Using Mtb reporters and quantitative imaging, we identified a role for ATG14 in regulating fusion of phagosomes containing Mtb with lysosomes, thereby enabling intracellular bacteria restriction. We conclude that ATG7 and ATG14 are both required for restricting Mtb replication in human macrophages.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , Citosol , Macrófagos , Fagossomos/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
3.
FEBS Open Bio ; 13(7): 1204-1217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36520007

RESUMO

Intracellular pathogens such as Mycobacterium tuberculosis (Mtb) have evolved diverse strategies to counteract macrophage defence mechanisms including phagolysosomal biogenesis. Within macrophages, Mtb initially resides inside membrane-bound phagosomes that interact with lysosomes and become acidified. The ability of Mtb to control and subvert the fusion between phagosomes and lysosomes plays a key role in the pathogenesis of tuberculosis. Therefore, understanding how pathogens interact with the endolysosomal network and cope with intracellular acidification is important to better understand the disease. Here, we describe in detail the use of fluorescence microscopy-based approaches to investigate Mtb responses to acidic environments in cellulo. We report high-content imaging modalities to probe Mtb sensing of external pH or visualise in real-time Mtb intrabacterial pH within infected human macrophages. We discuss various methodologies with step-by-step analyses that enable robust image-based quantifications. Finally, we highlight the advantages and limitations of these different approaches and discuss potential alternatives that can be applied to further investigate Mtb-host cell interactions. These methods can be adapted to study host-pathogen interactions in different biological systems and experimental settings. Altogether, these approaches represent a valuable tool to further broaden our understanding of the cellular and molecular mechanisms underlying intracellular pathogen survival.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos , Tuberculose/microbiologia , Fagossomos/microbiologia
4.
Nat Commun ; 13(1): 7338, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443305

RESUMO

Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.


Assuntos
Mitocôndrias , Proteoma , Animais , Camundongos , Macrófagos , Mitofagia , Peptídeo Hidrolases , Lisossomos
5.
Nat Commun ; 12(1): 3816, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155215

RESUMO

To be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


Assuntos
Antituberculosos/farmacologia , Citosol/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Diarilquinolinas/farmacologia , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Microscopia Eletrônica , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Pirazinamida/farmacocinética , Sistemas de Secreção Tipo VII/genética
6.
J Cell Sci ; 134(5)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32938685

RESUMO

Xenophagy is an important cellular defence mechanism against cytosol-invading pathogens, such as Mycobacterium tuberculosis (Mtb). Activation of xenophagy in macrophages targets Mtb to autophagosomes; however, how Mtb is targeted to autophagosomes in human macrophages at a high spatial and temporal resolution is unknown. Here, we use human induced pluripotent stem cell-derived macrophages (iPSDMs) to study the human macrophage response to Mtb infection and the role of the ESX-1 type VII secretion system. Using RNA-seq, we identify ESX-1-dependent transcriptional responses in iPSDMs after infection with Mtb. This analysis revealed differential inflammatory responses and dysregulated pathways such as eukaryotic initiation factor 2 (eIF2) signalling and protein ubiquitylation. Moreover, live-cell imaging revealed that Mtb infection in human macrophages induces dynamic ESX-1-dependent, LC3B-positive tubulovesicular autophagosomes (LC3-TVS). Through a correlative live-cell and focused ion beam scanning electron microscopy (FIB SEM) approach, we show that upon phagosomal rupture, Mtb induces the formation of LC3-TVS, from which the bacterium is able to escape to reside in the cytosol. Thus, iPSDMs represent a valuable model for studying spatiotemporal dynamics of human macrophage-Mtb interactions, and Mtb is able to evade capture by autophagic compartments.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mycobacterium tuberculosis , Tuberculose , Autofagia , Humanos , Macroautofagia , Macrófagos
7.
Sci Rep ; 9(1): 8667, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209261

RESUMO

Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.


Assuntos
Antituberculosos/farmacologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Nitrogênio/deficiência , Triglicerídeos/biossíntese , Animais , Animais Geneticamente Modificados , Carbono/metabolismo , Tolerância a Medicamentos , Embrião não Mamífero , Ácidos Graxos/metabolismo , Humanos , Isoniazida/farmacologia , Ligases/genética , Ligases/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Longevidade/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/mortalidade , Mycobacterium abscessus/metabolismo , Mycobacterium abscessus/patogenicidade , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Rifampina/farmacologia , Virulência , Peixe-Zebra
8.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30487163

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.


Assuntos
Parede Celular/enzimologia , Glicopeptídeos/genética , Fosfolipases/genética , Tuberculose/microbiologia , Animais , Antibacterianos/farmacologia , Parede Celular/química , Glicolipídeos/química , Glicolipídeos/genética , Glicopeptídeos/química , Humanos , Macrófagos/enzimologia , Camundongos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipases/química , Tuberculose/enzimologia
9.
Infect Immun ; 86(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986895

RESUMO

Within tuberculous granulomas, a subpopulation of Mycobacterium tuberculosis resides inside foamy macrophages (FM) that contain abundant cytoplasmic lipid bodies (LB) filled with triacylglycerol (TAG). Upon fusion of LB with M. tuberculosis-containing phagosomes, TAG is hydrolyzed and reprocessed by the bacteria into their own lipids, which accumulate as intracytosolic lipid inclusions (ILI). This phenomenon is driven by many mycobacterial lipases, among which LipY participates in the hydrolysis of host and bacterial TAG. However, the functional contribution of LipY's PE domain to TAG hydrolysis remains unclear. Here, enzymatic studies were performed to compare the lipolytic activities of recombinant LipY and its truncated variant lacking the N-terminal PE domain, LipY(ΔPE). Complementarily, an FM model was used where bone marrow-derived mouse macrophages were infected with M. bovis BCG strains either overexpressing LipY or LipY(ΔPE) or carrying a lipY deletion mutation prior to being exposed to TAG-rich very-low-density lipoprotein (VLDL). Results indicate that truncation of the PE domain correlates with increased TAG hydrolase activity. Quantitative electron microscopy analyses showed that (i) in the presence of lipase inhibitors, large ILI (ILI+3) were not formed because of an absence of LB due to inhibition of VLDL-TAG hydrolysis or inhibition of LB-neutral lipid hydrolysis by mycobacterial lipases, (ii) ILI+3 profiles in the strain overexpressing LipY(ΔPE) were reduced, and (iii) the number of ILI+3 profiles in the ΔlipY mutant was reduced by 50%. Overall, these results delineate the role of LipY and its PE domain in host and mycobacterial lipid consumption and show that additional mycobacterial lipases take part in these processes.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Macrófagos/fisiologia , Triglicerídeos/metabolismo , Fatores de Virulência/química , Animais , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Células Cultivadas , Feminino , Lipase/metabolismo , Lipoproteínas VLDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mycobacterium bovis , Estrutura Terciária de Proteína , Tuberculose/microbiologia , Fatores de Virulência/genética
10.
PLoS One ; 11(12): e0167989, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959952

RESUMO

Isolates of the human pathogen Mycobacterium tuberculosis recovered from clinical samples exhibit genetic heterogeneity. Such variation may result from the stressful environment encountered by the pathogen inside the macrophage, which is the host cell tubercle bacilli parasitize. To study the evolution of the M. tuberculosis genome during growth inside macrophages, we developed a model of intracellular culture in which bacteria were serially passaged in macrophage-like THP-1 cells for about 80 bacterial generations. Genome sequencing of single bacterial colonies isolated before and after the infection cycles revealed that M. tuberculosis developed mutations at a rate of about 5.7 × 10-9 / bp/ generation, consistent with mutation rates calculated during in vivo infection. Analysis of mutant growth in macrophages and in mice showed that the mutations identified after the cyclic infection conferred no advantage to the mutants relative to wild-type. Furthermore, activity testing of the recombinant protein harboring one of these mutations showed that the presence of the mutation did not affect the enzymatic activity. The serial infection protocol developed in this work to study M. tuberculosis genome microevolution can be applied to exposure to stressors to determine their effect on genome remodeling during intra-macrophage growth.


Assuntos
Evolução Molecular , Taxa de Mutação , Mycobacterium tuberculosis/genética , Seleção Genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Inoculações Seriadas , Fosfolipases Tipo C/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-27774438

RESUMO

Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.


Assuntos
Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Animais , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA